Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; : 168575, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38641238

RESUMO

DNA mismatch repair endonuclease MutL is a member of GHKL ATPase superfamily. Mutations of MutL homologs are causative of a hereditary cancer, Lynch syndrome. We characterized MutL homologs from human and a hyperthermophile, Aquifex aeolicus, (aqMutL) to reveal the catalytic mechanism for the ATPase activity. Although involvement of a basic residue had not been conceived in the catalytic mechanism, analysis of the pH dependence of the aqMutL ATPase activity revealed that the reaction is catalyzed by a residue with an alkaline pKa. Analyses of mutant aqMutLs showed that Lys79 is the catalytic residue, and the corresponding residues were confirmed to be critical for activities of human MutL homologs, on the basis of which a catalytic mechanism for MutL ATPase is proposed. These and other results described here would contribute to evaluating the pathogenicity of Lynch syndrome-associated missense mutations. Furthermore, it was confirmed that the catalytic lysine residue is conserved among DNA gyrases and microrchidia ATPases, other members of GHKL ATPases, indicating that the catalytic mechanism proposed here is applicable to these members of the superfamily.

2.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38515312

RESUMO

Proteins from hyperthermophiles often contain a large number of ionic interactions. Close examination of the previously determined crystal structure of the ATPase domain of MutL from a hyperthermophile, Aquifex aeolicus, revealed that the domain contains a continuous ion-pair/hydrogen-bond network consisting of 11 charged amino acid residues on a ß-sheet. Mutations were introduced to disrupt the network, showing that the more extensively the network was disrupted, the greater the thermostability of the protein was decreased. Based on urea denaturation analysis, a thermodynamic parameter, energy for the conformational stability, was evaluated, which indicated that amino acid residues in the network contributed additively to the protein stability. A continuous network rather than a cluster of isolated interactions would pay less entropic penalty upon fixing the side chains to make the same number of ion pairs/hydrogen bonds, which might contribute more favorably to the structural formation of thermostable proteins.


Assuntos
Bactérias , Dobramento de Proteína , Ligação de Hidrogênio , Bactérias/genética , Íons , Adenosina Trifosfatases/genética , Aminoácidos , Aquifex
3.
J Biol Chem ; 300(3): 105728, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325740

RESUMO

Serine palmitoyltransferase (SPT) catalyzes the pyridoxal-5'-phosphate (PLP)-dependent decarboxylative condensation of l-serine and palmitoyl-CoA to form 3-ketodihydrosphingosine (KDS). Although SPT was shown to synthesize corresponding products from amino acids other than l-serine, it is still arguable whether SPT catalyzes the reaction with d-serine, which is a question of biological importance. Using high substrate and enzyme concentrations, KDS was detected after the incubation of SPT from Sphingobacterium multivorum with d-serine and palmitoyl-CoA. Furthermore, the KDS comprised equal amounts of 2S and 2R isomers. 1H-NMR study showed a slow hydrogen-deuterium exchange at Cα of serine mediated by SPT. We further confirmed that SPT catalyzed the racemization of serine. The rate of the KDS formation from d-serine was comparable to those for the α-hydrogen exchange and the racemization reaction. The structure of the d-serine-soaked crystal (1.65 Å resolution) showed a distinct electron density of the PLP-l-serine aldimine, interpreted as the racemized product trapped in the active site. The structure of the α-methyl-d-serine-soaked crystal (1.70 Å resolution) showed the PLP-α-methyl-d-serine aldimine, mimicking the d-serine-SPT complex prior to racemization. Based on these enzymological and structural analyses, the synthesis of KDS from d-serine was explained as the result of the slow racemization to l-serine, followed by the reaction with palmitoyl-CoA, and SPT would not catalyze the direct condensation between d-serine and palmitoyl-CoA. It was also shown that the S. multivorum SPT catalyzed the racemization of the product KDS, which would explain the presence of (2R)-KDS in the reaction products.


Assuntos
Serina C-Palmitoiltransferase , Serina , Sphingobacterium , Domínio Catalítico , Cristalização , Medição da Troca de Deutério , Elétrons , Hidrogênio/metabolismo , Palmitoil Coenzima A/metabolismo , Serina/análogos & derivados , Serina/metabolismo , Serina C-Palmitoiltransferase/química , Serina C-Palmitoiltransferase/metabolismo , Sphingobacterium/enzimologia , Sphingobacterium/metabolismo , Esfingosina/análogos & derivados , Esfingosina/biossíntese , Esfingosina/metabolismo , Estereoisomerismo , Especificidade por Substrato
4.
Life Sci Alliance ; 6(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37487639

RESUMO

DNA mismatch repair endonuclease MutL binds two zinc ions. However, the endonuclease activity of MutL is drastically enhanced by other divalent metals such as manganese, implying that MutL binds another catalytic metal at some site other than the zinc-binding sites. Here, we solved the crystal structure of the endonuclease domain of Aquifex aeolicus MutL in the manganese- or cadmium-bound form, revealing that these metals compete with zinc at the same sites. Mass spectrometry revealed that the MutL yielded 5'-phosphate and 3'-OH products, which is characteristic of the two-metal-ion mechanism. Crystallographic analyses also showed that the position and flexibility of a highly conserved Arg of A. aeolicus MutL altered depending on the presence of zinc/manganese or the specific inhibitor cadmium. Site-directed mutagenesis revealed that the Arg was critical for the catalysis. We propose that zinc ion and its binding sites are physiologically of catalytic importance and that the two-metal-ion mechanism works in the reaction, where the Arg plays a catalytic role. Our results also provide a mechanistic insight into the inhibitory effect of a mutagen/carcinogen, cadmium, on MutL.


Assuntos
Cádmio , Zinco , Manganês , Endonucleases , Catálise
5.
J Biol Chem ; 299(5): 104684, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37030501

RESUMO

Serine palmitoyltransferase (SPT) is a key enzyme of sphingolipid biosynthesis, which catalyzes the pyridoxal-5'-phosphate-dependent decarboxylative condensation reaction of l-serine (l-Ser) and palmitoyl-CoA (PalCoA) to form 3-ketodihydrosphingosine called long chain base (LCB). SPT is also able to metabolize l-alanine (l-Ala) and glycine (Gly), albeit with much lower efficiency. Human SPT is a membrane-bound large protein complex containing SPTLC1/SPTLC2 heterodimer as the core subunits, and it is known that mutations of the SPTLC1/SPTLC2 genes increase the formation of deoxy-type of LCBs derived from l-Ala and Gly to cause some neurodegenerative diseases. In order to study the substrate recognition of SPT, we examined the reactivity of Sphingobacterium multivorum SPT on various amino acids in the presence of PalCoA. The S. multivorum SPT could convert not only l-Ala and Gly but also l-homoserine, in addition to l-Ser, into the corresponding LCBs. Furthermore, we obtained high-quality crystals of the ligand-free form and the binary complexes with a series of amino acids, including a nonproductive amino acid, l-threonine, and determined the structures at 1.40 to 1.55 Å resolutions. The S. multivorum SPT accommodated various amino acid substrates through subtle rearrangements of the active-site amino acid residues and water molecules. It was also suggested that non-active-site residues mutated in the human SPT genes might indirectly influence the substrate specificity by affecting the hydrogen-bonding networks involving the bound substrate, water molecules, and amino acid residues in the active site of this enzyme. Collectively, our results highlight SPT structural features affecting substrate specificity for this stage of sphingolipid biosynthesis.


Assuntos
Serina C-Palmitoiltransferase , Sphingobacterium , Humanos , Palmitoil Coenzima A/química , Palmitoil Coenzima A/metabolismo , Serina/química , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo , Sphingobacterium/enzimologia , Esfingolipídeos/metabolismo , Especificidade por Substrato
6.
Acta Crystallogr D Struct Biol ; 78(Pt 12): 1428-1438, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36458614

RESUMO

The mechanisms by which enzymes promote catalytic reactions efficiently through their structural changes remain to be fully elucidated. Recent progress in serial femtosecond X-ray crystallography (SFX) using X-ray free-electron lasers (XFELs) has made it possible to address these issues. In particular, mix-and-inject serial crystallography (MISC) is promising for the direct observation of structural changes associated with ongoing enzymic reactions. In this study, SFX measurements using a liquid-jet system were performed on microcrystals of bacterial copper amine oxidase anaerobically premixed with a substrate amine solution. The structure determined at 1.94 Šresolution indicated that the peptidyl quinone cofactor is in equilibrium between the aminoresorcinol and semiquinone radical intermediates, which accumulate only under anaerobic single-turnover conditions. These results show that anaerobic conditions were well maintained throughout the liquid-jet SFX measurements, preventing the catalytic intermediates from reacting with dioxygen. These results also provide a necessary framework for performing time-resolved MISC to study enzymic reaction mechanisms under anaerobic conditions.


Assuntos
Amina Oxidase (contendo Cobre) , Cristalografia por Raios X , Catálise , Aminas , Cetonas
7.
Acta Crystallogr F Struct Biol Commun ; 78(Pt 12): 408-415, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36458620

RESUMO

Serine palmitoyltransferase (SPT) catalyses the first reaction in sphingolipid biosynthesis: the decarboxylative condensation of L-serine (L-Ser) and palmitoyl-CoA to form 3-ketodihydrosphingosine. SPT from Sphingobacterium multivorum has been isolated and its crystal structure in complex with L-Ser has been determined at 2.3 Šresolution (PDB entry 3a2b). However, the quality of the crystal was not good enough to judge the conformation of the cofactor molecule and the orientations of the side chains of the amino-acid residues in the enzyme active site. The crystal quality was improved by revision of the purification procedure and by optimization of both the crystallization procedure and the post-crystallization treatment conditions. Here, the crystal structure of SPT complexed with tris(hydroxymethyl)aminomethane (Tris), a buffer component, was determined at 1.65 Šresolution. The protein crystallized at 20°C and diffraction data were collected from the crystals to a resolution of 1.65 Å. The crystal belonged to the tetragonal space group P41212, with unit-cell parameters a = b = 61.32, c = 208.57 Å. Analysis of the crystal structure revealed C4-C5-C5A-O4P (77°) and C5-C5A-O4P-P (-143°) torsion angles in the phosphate-group moiety of the cofactor pyridoxal 5'-phosphate (PLP) that are more reasonable than those observed in the previously reported crystal structure (14° and 151°, respectively). Furthermore, the clear electron density showing a Schiff-base linkage between PLP and the bulky artificial ligand Tris indicated exceptional flexibility of the active-site cavity of this enzyme. These findings open up the possibility for further study of the detailed mechanisms of substrate recognition and catalysis by this enzyme.


Assuntos
Serina C-Palmitoiltransferase , Trometamina , Cristalografia por Raios X , Fosfato de Piridoxal , Serina
8.
Biochem Biophys Res Commun ; 637: 181-188, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36403481

RESUMO

The Chikungunya virus (CHIKV), an enveloped RNA virus that has been identified in over 40 countries and is considered a growing threat to public health worldwide. However, there is no preventive vaccine or specific therapeutic drug for CHIKV infection. To identify a new inhibitor against CHIKV infection, this study constructed a subgenomic RNA replicon expressing the secretory Gaussia luciferase (Gluc) based on the CHIKV SL11131 strain. Transfection of in vitro-transcribed replicon RNA to BHK-21 cells revealed that Gluc activity in culture supernatants was correlated with the intracellular replication of the replicon genome. Through a chemical compound library screen using the Gluc reporter CHIKV replicon, we identified several compounds that suppressed CHIKV infection in Vero cells. Among the hits identified, CP-154,526, a non-peptide antagonist of the corticotropin-releasing factor receptor type-1 (CRF-R1), showed the strongest anti-CHIKV activity and inhibited CHIKV infection in Huh-7 cells. Interestingly, other CRF-R1 antagonists, R121919 and NGD 98-2, also exhibited inhibitory effects on CHIKV infection. Time-of-drug addition and virus entry assays indicated that CP-154,526 suppressed a post-entry step of infection, suggesting that CRF-R1 antagonists acted on a target in the intracellular replication process of CHIKV. Therefore, the Gluc reporter replicon system established in this study would greatly facilitate the development of antiviral drugs against CHIKV infection.


Assuntos
Arecaceae , Febre de Chikungunya , Vírus Chikungunya , Copépodes , Chlorocebus aethiops , Animais , Vírus Chikungunya/genética , Febre de Chikungunya/tratamento farmacológico , Células Vero , Hormônio Liberador da Corticotropina , Replicon/genética , Luciferases/genética , Replicação Viral
9.
J Struct Biol ; 214(4): 107904, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36228973

RESUMO

Fatty acid kinase is necessary for the incorporation of exogenous fatty acids into membrane phospholipids. Fatty acid kinase consists of two components: a kinase component, FakA, that phosphorylates a fatty acid bound to a fatty acid-binding component, FakB. However, the molecular details underlying the phosphotransfer reaction remain to be resolved. We determined the crystal structure of the N-terminal domain of FakA bound to ADP from Thermus thermophilus HB8. The overall structure of this domain showed that the helical barrel fold is similar to the nucleotide-binding component of dihydroxyacetone kinase. The structure of the nucleotide-binding site revealed the roles of the conserved residues in recognition of ADP and Mg2+, but the N-terminal domain of FakA lacked the ADP-capping loop found in the dihydroxyacetone kinase component. Based on the structural similarity to the two subunits of dihydroxyacetone kinase complex, we constructed a model of the complex of T. thermophilus FakB and the N-terminal domain of FakA. In this model, the invariant Arg residue of FakB occupied a position that was spatially similar to that of the catalytically important Arg residue of dihydroxyacetone kinase, which predicted a composite active site in the Fatty acid kinase complex.


Assuntos
Ácidos Graxos , Thermus thermophilus , Difosfato de Adenosina
10.
Structure ; 30(7): 973-982.e4, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35439431

RESUMO

MutS family proteins are classified into MutS-I and -II lineages: MutS-I recognizes mismatched DNA and initiates mismatch repair, whereas MutS-II recognizes DNA junctions to modulate recombination. MutS-I forms dimeric clamp-like structures enclosing the mismatched DNA, and its composite ATPase sites regulate DNA-binding modes. Meanwhile, the structures of MutS-II have not been determined; accordingly, it remains unknown how MutS-II recognizes DNA junctions and how nucleotides control DNA binding. Here, we solved the ligand-free and ADP-bound crystal structures of bacterial MutS2 belonging to MutS-II. MutS2 also formed a dimeric clamp-like structure with composite ATPase sites. The ADP-bound MutS2 was more flexible compared to the ligand-free form and could be more suitable for DNA entry. The inner hole of the MutS2 clamp was two times larger than that of MutS-I, and site-directed mutagenesis analyses revealed DNA-binding sites at the inner hole. Based on these, a model is proposed that describes how MutS2 recognizes DNA junctions.


Assuntos
Proteínas de Escherichia coli , Proteína MutS de Ligação de DNA com Erro de Pareamento , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/química , Proteínas de Bactérias/química , DNA/metabolismo , Reparo de Erro de Pareamento de DNA , Proteínas de Escherichia coli/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo
11.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 10): 356-363, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34605440

RESUMO

Recent advances in serial femtosecond X-ray crystallography (SFX) using X-ray free-electron lasers have paved the way for determining radiation-damage-free protein structures under nonfreezing conditions. However, the large-scale preparation of high-quality microcrystals of uniform size is a prerequisite for SFX, and this has been a barrier to its widespread application. Here, a convenient method for preparing high-quality microcrystals of a bacterial quinoprotein enzyme, copper amine oxidase from Arthrobacter globiformis, is reported. The method consists of the mechanical crushing of large crystals (5-15 mm3), seeding the crushed crystals into the enzyme solution and standing for 1 h at an ambient temperature of ∼26°C, leading to the rapid formation of microcrystals with a uniform size of 3-5 µm. The microcrystals diffracted X-rays to a resolution beyond 2.0 Šin SFX measurements at the SPring-8 Angstrom Compact Free Electron Laser facility. The damage-free structure determined at 2.2 Šresolution was essentially identical to that determined previously by cryogenic crystallography using synchrotron X-ray radiation.


Assuntos
Amina Oxidase (contendo Cobre)/química , Arthrobacter/enzimologia , Síncrotrons/instrumentação , Sequência de Aminoácidos , Cristalografia por Raios X , Lasers , Modelos Moleculares , Conformação Proteica , Temperatura
12.
J Biol Chem ; 295(33): 11643-11655, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32571878

RESUMO

In humans, mutations in genes encoding homologs of the DNA mismatch repair endonuclease MutL cause a hereditary cancer that is known as Lynch syndrome. Here, we determined the crystal structures of the N-terminal domain (NTD) of MutL from the thermophilic eubacterium Aquifex aeolicus (aqMutL) complexed with ATP analogs at 1.69-1.73 Å. The structures revealed significant structural similarities to those of a human MutL homolog, postmeiotic segregation increased 2 (PMS2). We introduced five Lynch syndrome-associated mutations clinically found in human PMS2 into the aqMutL NTD and investigated the protein stability, ATPase activity, and DNA-binding ability of these protein variants. Among the mutations studied, the most unexpected results were obtained for the residue Ser34. Ser34 (Ser46 in PMS2) is located at a previously identified Bergerat ATP-binding fold. We found that the S34I aqMutL NTD retains ATPase and DNA-binding activities. Interestingly, CD spectrometry and trypsin-limited proteolysis indicated the disruption of a secondary structure element of the S34I NTD, destabilizing the overall structure of the aqMutL NTD. In agreement with this, the recombinant human PMS2 S46I NTD was easily digested in the host Escherichia coli cells. Moreover, other mutations resulted in reduced DNA-binding or ATPase activity. In summary, using the thermostable aqMutL protein as a model molecule, we have experimentally determined the effects of the mutations on MutL endonuclease; we discuss the pathological effects of the corresponding mutations in human PMS2.


Assuntos
Proteínas de Bactérias/genética , Neoplasias Colorretais Hereditárias sem Polipose/genética , Proteínas MutL/genética , Mutação , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Aquifex/química , Aquifex/genética , Proteínas de Bactérias/química , Sítios de Ligação , Cristalografia por Raios X , Reparo de Erro de Pareamento de DNA , Humanos , Modelos Moleculares , Proteínas MutL/química , Conformação Proteica , Domínios Proteicos
13.
Proc Natl Acad Sci U S A ; 117(20): 10818-10824, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32371483

RESUMO

Recent advances in neutron crystallographic studies have provided structural bases for quantum behaviors of protons observed in enzymatic reactions. Thus, we resolved the neutron crystal structure of a bacterial copper (Cu) amine oxidase (CAO), which contains a prosthetic Cu ion and a protein-derived redox cofactor, topa quinone (TPQ). We solved hitherto unknown structures of the active site, including a keto/enolate equilibrium of the cofactor with a nonplanar quinone ring, unusual proton sharing between the cofactor and the catalytic base, and metal-induced deprotonation of a histidine residue that coordinates to the Cu. Our findings show a refined active-site structure that gives detailed information on the protonation state of dissociable groups, such as the quinone cofactor, which are critical for catalytic reactions.


Assuntos
Amina Oxidase (contendo Cobre)/química , Proteínas de Bactérias/química , Quinonas/química , Domínio Catalítico , Coenzimas/química , Difração de Nêutrons , Prótons
14.
Plant Cell Physiol ; 60(9): 2026-2039, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31076779

RESUMO

The tRNA modification at the wobble position of Lys, Glu and Gln (wobbleU* modification) is responsible for the fine-tuning of protein translation efficiency and translation rate. This modification influences organism function in accordance with growth and environmental changes. However, the effects of wobbleU* modification at the cellular, tissue, or individual level have not yet been elucidated. In this study, we show that sulfur modification of wobbleU* of the tRNAs affects leaf development in Arabidopsis thaliana. The sulfur modification was impaired in the two wobbleU*-modification mutants: the URM1-like protein-defective mutant and the Elongator complex-defective mutants. Analyses of the mutant phenotypes revealed that the deficiency in the wobbleU* modification increased the airspaces in the leaves and the leaf size without affecting the number and the area of palisade mesophyll cells. On the other hand, both mutants exhibited increased number of leaf epidermal pavement cells but with reduced cell size. The deficiency in the wobbleU* modification also delayed the initiation of the endoreduplication processes of mesophyll cells. The phenotype of ASYMMETRIC LEAVES2-defective mutant was enhanced in the Elongator-defective mutants, while it was unchanged in the URM1-like protein-defective mutant. Collectively, the findings of this study suggest that the tRNA wobbleU* modification plays an important role in leaf morphogenesis by balancing the development between epidermal and mesophyll tissues.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Processamento Pós-Transcricional do RNA , RNA de Transferência/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Vias Biossintéticas , Células do Mesofilo/metabolismo , Mutação , Fenótipo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , RNA de Plantas/genética , RNA de Plantas/metabolismo , RNA de Transferência/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Enxofre/metabolismo
15.
DNA Repair (Amst) ; 75: 29-38, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30711824

RESUMO

In eukaryotes and most bacteria, the MutS1/MutL-dependent mismatch repair system (MMR) corrects DNA mismatches that arise as replication errors. MutS1 recognizes mismatched DNA and stimulates the nicking endonuclease activity of MutL to incise mismatch-containing DNA. In archaea, there has been no experimental evidence to support the existence of the MutS1/MutL-dependent MMR. Instead, it was revealed that a large part of archaea possess mismatch-specific endonuclease EndoMS, indicating that the EndoMS-dependent MMR is widely adopted in archaea. However, some archaeal genomes encode MutS1 and MutL homologs, and their molecular functions have not been revealed. In this study, we purified and characterized recombinant MutS1 and the C-terminal endonuclease domain of MutL from a methanogenic archaeon Methanosaeta thermophila (mtMutS1 and the mtMutL CTD, respectively). mtMutS1 bound to mismatched DNAs with a higher affinity than to perfectly-matched and other structured DNAs, which resembles the DNA-binding specificities of eukaryotic and bacterial MutS1 homologs. The mtMutL CTD showed a Mn2+/Ni2+/Co2+-dependent nicking endonuclease activity that introduces single-strand breaks into a circular double-stranded DNA. The nicking endonuclease activity of the mtMutL CTD was impaired by mutagenizing the metal-binding motif that is identical to those of eukaryotic and bacterial MutL endonucleases. These results raise the possibility that not only the EndoMS-dependent MMR but also the traditional MutS1/MutL-dependent MMR exist in archaea.


Assuntos
Methanosarcinales/enzimologia , Proteínas MutL/metabolismo , Sequência de Aminoácidos , Reparo de Erro de Pareamento de DNA , Methanosarcinales/metabolismo , Modelos Moleculares , Proteínas MutL/química , Antígeno Nuclear de Célula em Proliferação/metabolismo , Multimerização Proteica , Estrutura Quaternária de Proteína
16.
Proc Natl Acad Sci U S A ; 116(1): 135-140, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30563857

RESUMO

In the catalytic reaction of copper amine oxidase, the protein-derived redox cofactor topaquinone (TPQ) is reduced by an amine substrate to an aminoresorcinol form (TPQamr), which is in equilibrium with a semiquinone radical (TPQsq). The transition from TPQamr to TPQsq is an endothermic process, accompanied by a significant conformational change of the cofactor. We employed the humid air and glue-coating (HAG) method to capture the equilibrium mixture of TPQamr and TPQsq in noncryocooled crystals of the enzyme from Arthrobacter globiformis and found that the equilibrium shifts more toward TPQsq in crystals than in solution. Thermodynamic analyses of the temperature-dependent equilibrium also revealed that the transition to TPQsq is entropy-driven both in crystals and in solution, giving the thermodynamic parameters that led to experimental determination of the crystal packing effect. Furthermore, we demonstrate that the binding of product aldehyde to the hydrophobic pocket in the active site produces various equilibrium states among two forms of the product Schiff-base, TPQamr, and TPQsq, in a pH-dependent manner. The temperature-controlled HAG method provides a technique for thermodynamic analysis of conformational changes occurring in protein crystals that are hardly scrutinized by conventional cryogenic X-ray crystallography.


Assuntos
Amina Oxidase (contendo Cobre)/química , Arthrobacter/enzimologia , Di-Hidroxifenilalanina/análogos & derivados , Catálise , Coenzimas/química , Di-Hidroxifenilalanina/química , Conformação Molecular , Temperatura , Termodinâmica , Difração de Raios X
18.
J Biochem ; 165(2): 185-195, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30423116

RESUMO

Homoserine dehydrogenase from Thermus thermophilus (TtHSD) is a key enzyme in the aspartate pathway that catalyses the reversible conversion of l-aspartate-ß-semialdehyde to l-homoserine (l-Hse) with NAD(P)H. We determined the crystal structures of unliganded TtHSD, TtHSD complexed with l-Hse and NADPH, and Lys99Ala and Lys195Ala mutant TtHSDs, which have no enzymatic activity, complexed with l-Hse and NADP+ at 1.83, 2.00, 1.87 and 1.93 Å resolutions, respectively. Binding of l-Hse and NADPH induced the conformational changes of TtHSD from an open to a closed form: the mobile loop containing Glu180 approached to fix l-Hse and NADPH, and both Lys99 and Lys195 could make hydrogen bonds with the hydroxy group of l-Hse. The ternary complex of TtHSDs in the closed form mimicked a Michaelis complex better than the previously reported open form structures from other species. In the crystal structure of Lys99Ala TtHSD, the productive geometry of the ternary complex was almost preserved with one new water molecule taking over the hydrogen bonds associated with Lys99, while the positions of Lys195 and l-Hse were significantly retained with those of the wild-type enzyme. These results propose new possibilities that Lys99 is the acid-base catalytic residue of HSDs.


Assuntos
Homosserina Desidrogenase/química , Homosserina/química , NADP/química , Cristalografia por Raios X , Homosserina/metabolismo , Homosserina Desidrogenase/metabolismo , Modelos Moleculares , NADP/metabolismo , Conformação Proteica , Thermus thermophilus/enzimologia
19.
FEBS Lett ; 592(24): 4066-4077, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30372520

RESUMO

In plant organelle genomes, homeologous recombination between heteroallelic positions of repetitive sequences is increased by dysfunction of the gene encoding MutS homolog 1 (MSH1), a plant organelle-specific homolog of bacterial mismatch-binding protein MutS1. The C-terminal region of plant MSH1 contains the GIY-YIG endonuclease motif. The biochemical characteristics of plant MSH1 have not been investigated; accordingly, the molecular mechanism by which plant MSH1 suppresses homeologous recombination is unknown. Here, we characterized the recombinant GIY-YIG domain of Arabidopsis thaliana MSH1, showing that the domain possesses branched DNA-specific DNA-binding activity. Interestingly, the domain exhibited no endonuclease activity, suggesting that the mismatch-binding domain is required for DNA incision. Based on these results, we propose a possible mechanism for MSH1-dependent suppression of homeologous recombination.


Assuntos
Proteínas de Arabidopsis/genética , DNA/metabolismo , Endonucleases/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Sequência de Aminoácidos , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação/genética , DNA/genética , Endonucleases/classificação , Endonucleases/metabolismo , Modelos Genéticos , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Filogenia , Reparo de DNA por Recombinação , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
20.
Sci Rep ; 8(1): 14228, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30242198

RESUMO

The biosynthesis of heme is strictly regulated, probably because of the toxic effects of excess heme and its biosynthetic precursors. In many organisms, heme biosynthesis starts with the production of 5-aminolevulinic acid (ALA) from glycine and succinyl-coenzyme A, a process catalyzed by a homodimeric enzyme, pyridoxal 5'-phosphate (PLP)-dependent 5-aminolevulinate synthase (ALAS). ALAS activity is negatively regulated by heme in various ways, such as the repression of ALAS gene expression, degradation of ALAS mRNA, and inhibition of mitochondrial translocation of the mammalian precursor protein. There has been no clear evidence, however, that heme directly binds to ALAS to negatively regulate its activity. We found that recombinant ALAS from Caulobacter crescentus was inactivated via a heme-mediated feedback manner, in which the essential coenzyme PLP was rel eased to form the inactive heme-bound enzyme. The spectroscopic properties of the heme-bound ALAS showed that a histidine-thiolate hexa-coordinated ferric heme bound to each subunit with a one-to-one stoichiometry. His340 and Cys398 were identified as the axial ligands of heme, and mutant ALASs lacking either of these ligands became resistant to heme-mediated inhibition. ALAS expressed in C. crescentus was also found to bind heme, suggesting that heme-mediated feedback inhibition of ALAS is physiologically relevant in C. crescentus.


Assuntos
5-Aminolevulinato Sintetase/metabolismo , Caulobacter crescentus/metabolismo , Heme/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Coenzimas/metabolismo , Histidina/metabolismo , Humanos , Ligantes , Fosfato de Piridoxal/metabolismo , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...